Salt restriction leads to activation of adult renal mesenchymal stromal cell-like cells via prostaglandin E2 and E-prostanoid receptor 4.
نویسندگان
چکیده
Despite the importance of juxtaglomerular cell recruitment in the pathophysiology of cardiovascular diseases, the mechanisms that underlie renin production under conditions of chronic stimulation remain elusive. We have previously shown that CD44+ mesenchymal-like cells (CD44+ cells) exist in the adult kidney. Under chronic sodium deprivation, these cells are recruited to the juxtaglomerular area and differentiate to new renin-expressing cells. Given the proximity of macula densa to the juxtaglomerular area and the importance of macula densa released prostanoids in renin synthesis and release, we hypothesized that chronic sodium deprivation induces macula densa release of prostanoids, stimulating renal CD44+ cell activation and differentiation. CD44+ cells were isolated from adult kidneys and cocultured with the macula densa cell line, MMDD1, in normal or low-sodium medium. Low sodium stimulated prostaglandin E2 production by MMDD1 and induced migration of CD44+ cells. These effects were inhibited by addition of a cyclooxygenase 2 inhibitor (NS398) or an E-prostanoid receptor 4 antagonist (AH23848) to MMDD1 or CD44+ cells, respectively. Addition of prostaglandin E2 to CD44+ cells increased cell migration and induced renin expression. In vivo activation of renal CD44+ cells during juxtaglomerular recruitment was attenuated in wild-type mice subjected to salt restriction in the presence of cyclooxygenase 2 inhibitor rofecoxib. Similar results were observed in E-prostanoid receptor 4 knockout mice subjected to salt restriction. These results show that the prostaglandin E2/E-prostanoid receptor 4 pathway plays a key role in the activation of renal CD44+ mesenchymal stromal cell-like cells during conditions of juxtaglomerular recruitment; highlighting the importance of this pathway as a key regulatory mechanism of juxtaglomerular recruitment.
منابع مشابه
Antiinflammation effect of human placental multipotent mesenchymal stromal cells is mediated by prostaglandin E2 via a myeloid differentiation primary response gene 88-dependent pathway.
BACKGROUND We sought to elucidate the antiinflammation effect of human placental multipotent mesenchymal stromal cells (hPMSCs) and the possible molecular mechanisms. METHODS Immortalized murine macrophages (RAW264.7 cells), with or without hPMSCs coincubation, were treated with endotoxin to induce expression of the relevant molecules. RESULTS The peak concentrations (means ± SD) of inflamm...
متن کاملMultiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملThe prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity.
Peripheral inflammation leads to immune responses in brain characterized by microglial activation, elaboration of proinflammatory cytokines and reactive oxygen species, and secondary neuronal injury. The inducible cyclooxygenase (COX), COX-2, mediates a significant component of this response in brain via downstream proinflammatory PG signaling. In this study, we investigated the function of the...
متن کاملIncreased dietary NaCl induces renal medullary PGE2 production and natriuresis via the EP2 receptor.
A high-NaCl diet induces renal medullary cyclooxygenase (COX)2 expression, and selective intramedullary infusion of a COX2 inhibitor increases blood pressure in rats on a high-salt diet. The present study characterized the specific prostanoid contributing to the antihypertensive effect of COX2. C57BL/6J mice placed on a high-NaCl diet exhibited increased medullary COX2 and microsomal prostaglan...
متن کاملSeminal plasma and prostaglandin E2 up-regulate fibroblast growth factor 2 expression in endometrial adenocarcinoma cells via E-series prostanoid-2 receptor-mediated transactivation of the epidermal growth factor receptor and extracellular signal-regulated kinase pathway.
BACKGROUND Prostaglandin E(2) (PGE(2)) has been shown to modulate angiogenesis and tumour progression via the E-series prostanoid-2 (EP2) receptor. Endometrial adenocarcinomas may be exposed to endogenous PGE(2) and exogenous PGE(2), present at high concentration in seminal plasma. METHODS This study investigated fibroblast growth factor 2 (FGF2) mRNA expression and cell signalling in respons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 65 5 شماره
صفحات -
تاریخ انتشار 2015